| Enraf–Nonius CAD-4           | $\theta_{\rm max} = 45^{\circ}$ |
|------------------------------|---------------------------------|
| diffractometer               | $h = -9 \rightarrow 9$          |
| Bisect scans                 | $k = 0 \rightarrow 16$          |
| Absorption correction:       | $l = 0 \rightarrow 14$          |
| none                         | 3 standard reflections          |
| 2457 measured reflections    | frequency: 60 min               |
| 2457 independent reflections | intensity decay: <1%            |
| 1339 observed reflections    |                                 |
| $[I > 3\sigma(I)]$           |                                 |
|                              |                                 |

## Refinement

Refinement on F $\Delta \rho_{max} = 0.95 \text{ e} \text{ Å}^{-3}$ R = 0.029 $\Delta \rho_{min} = -0.95 \text{ e} \text{ Å}^{-3}$ wR = 0.027Extinction correction: noneS = 0.997Atomic scattering factors1339 reflectionsfrom International Tables94 parametersfor X-ray Crystallography $w = 1/\sigma(F)$ (1974, Vol. IV) $(\Delta/\sigma)_{max} < 0.001$ 

# Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

 $B_{iso}$  for Li,  $B_{eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j$  for all others.

|      | х           | у          | z           | $B_{\rm iso}/B_{\rm eq}$ |
|------|-------------|------------|-------------|--------------------------|
| Mo   | 0.21270 (8) | 0.5        | 0.22578 (6) | 0.339 (6)                |
| P(1) | 0.4030 (3)  | 0.1806 (2) | 0.0289 (2)  | 0.42(2)                  |
| P(2) | 0.7937 (3)  | 0.2851 (2) | 0.4194 (2)  | 0.47 (2)                 |
| Li   | 0.797 (2)   | 0.364(1)   | 0.821(2)    | 1.8 (2)                  |
| O(1) | 0.0539 (9)  | 0.3200 (6) | 0.3608 (7)  | 0.96 (8)                 |
| O(2) | 0.3985 (8)  | 0.6822 (5) | 0.0963 (6)  | 0.80(8)                  |
| O(3) | 0.1328 (8)  | 0.7007 (5) | 0.3807 (6)  | 0.72 (8)                 |
| O(4) | 0.6172 (7)  | 0.4331 (5) | 0.4226 (6)  | 0.96 (8)                 |
| O(5) | 0.2403 (8)  | 0.3376 (4) | 0.0069 (5)  | 0.56 (8)                 |
| O(6) | 0.5967 (8)  | 0.1593 (4) | 0.2607 (5)  | 0.80 (8)                 |
| O(7) | -0.2025 (7) | 0.5375 (4) | 0.0077 (5)  | 0.62(7)                  |
|      |             |            |             |                          |

# Table 2. Selected geometric parameters (Å, °)

| MoO(1)                   | 2.068 (5) | P(1) - P(2)                      | 2.915 (2) |
|--------------------------|-----------|----------------------------------|-----------|
| MoO(2)                   | 2.131 (4) | P(2)—O(4)                        | 1.518 (4) |
| Mo-O(3)                  | 2.112 (5) | P(2)—O(6)                        | 1.606 (4) |
| MoO(4)                   | 2.084 (3) | $P(2) - O(1^{ini})$              | 1.493 (5) |
| MoO(5)                   | 2.093 (4) | $P(2) - O(3^{11})$               | 1.508 (4) |
| MoO(7)                   | 2.126 (3) | $Li - O(5^{v})$                  | 2.15(1)   |
| P(1)—O(5)                | 1.521 (4) | $Li - O(7^{v})$                  | 1.96(1)   |
| P(1)—O(6)                | 1.602 (3) | $Li - O(2^{iv})$                 | 1.99(1)   |
| $P(1) - O(7^{i})$        | 1.518 (4) | $Li - O(3^{iv})$                 | 2.08(1)   |
| P(1)—O(2 <sup>ii</sup> ) | 1.513 (5) |                                  |           |
| O(1)—Mo—O(2)             | 177.0(1)  | $O(5) - P(1) - O(2^{n})$         | 110.4 (2) |
| O(1)-Mo-O(3)             | 100.5 (2) | O(6) - P(1) - O(7')              | 102.5 (2) |
| O(1)—Mo—O(4)             | 85.3 (2)  | $O(6) - P(1) - O(2^n)$           | 108.4 (2) |
| O(1)—Mo—O(5)             | 89.3 (2)  | P(1) - O(6) - P(2)               | 130.6 (3) |
| O(1)-Mo-O(7)             | 91.4 (1)  | O(4)—P(2)—O(6)                   | 109.5 (2) |
| O(2)—Mo—O(3)             | 80.0 (2)  | $O(4) - P(2) - O(1^{1})$         | 112.7 (3) |
| O(2)—Mo—O(4)             | 91.8 (1)  | $O(4) - P(2) - O(3^{11})$        | 109.4 (3) |
| O(2)—Mo—O(5)             | 90.7 (2)  | O(5`)—Li—O(7`)                   | 83.8 (4)  |
| O(2)—Mo—O(7)             | 91.6(1)   | $O(5^{'})$ —Li— $O(2^{''})$      | 103.2 (5) |
| O(3)MoO(4)               | 99.8 (1)  | O(5')—Li—O(3")                   | 89.0 (5)  |
| O(3)—Mo—O(5)             | 165.2 (1) | $O(6) - P(2) - O(1^{1})$         | 108.0 (3) |
| O(3)—Mo—O(7)             | 87.6 (1)  | $O(6) - P(2) - O(3^{i})$         | 104.0 (2) |
| O(4)—Mo—O(5)             | 92.0(1)   | $O(7^{\nu})$ —Li— $O(2^{\nu})$   | 105.6 (7) |
| O(4)—Mo—O(7)             | 172.4 (1) | $O(7^{\nu})$ —Li— $O(3^{\nu})$   | 169.1 (7) |
| O(5)—Mo—O(7)             | 81.1(1)   | $O(1^{v_1}) - P(2) - O(3^{v_1})$ | 112.8 (2) |
| O(5)—P(1)—O(6)           | 108.3 (2) | $O(2^{i\nu})$ —Li— $O(3^{i\nu})$ | 84.0 (5)  |
| $O(5) - P(1) - O(7^{i})$ | 112.3 (2) |                                  |           |

Symmetry codes: (i)  $-x, y - \frac{1}{2}, -z$ ; (ii)  $1 - x, y - \frac{1}{2}, -z$ ; (iii) 1 + x, 1 + y, z; (iv)  $1 - x, y - \frac{1}{2}, 1 - z$ ; (v) 1 + x, y, 1 + z; (vi) 1 + x, y, z.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Calculations were performed using a SPARC station with the *Xtal*3.2 system (Hall, Flack & Stewart, 1992). The figure was obtained with *MOLVIEW* (Cense, 1993).

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1147). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

Cense, J. M. (1993). MOLVIEW. ENSCP, 75231 Paris, France.

- Genkina, E. A., Maksimov, B. A., Timofeeva, V. A., Byka, A. B. & Mel'nikov, O. K. (1985). Sov. Phys. Dokl. 30, 817–820.
- Hall, S. R., Flack, H. D. & Stewart, J. M. (1992). Editors. *Xtal3.2 Reference Manual*. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Lii, K. H., Wang, Y. P., Chen, Y. B. & Wang, S. L. (1990). J. Solid State Chem. 86, 143-148.
- Wang, S. L., Wang, P. C. & Nieh, Y. P. (1990). J. Appl. Cryst. 23, 520–525.

Acta Cryst. (1996). C52, 1594-1597

# Lead(II) Diiron(III) Pyrophosphate and Barium Diiron(III) Pyrophosphate

AICHA BOUTFESSI,<sup>*a*</sup> Ali Boukhari<sup>*a*</sup> and Elizabeth M. Holt<sup>*b*\*</sup>

<sup>a</sup>Laboratoire de Chimie du Solide Appliquée, Departement de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco, and <sup>b</sup>Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA. E-mail: chememh@osucc.bitnet

(Received 14 August 1995; accepted 5 January 1996)

### Abstract

PbFe<sup>[II</sup><sub>2</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub> [diiron(III) lead(II) bis(diphosphate)] crystallizes to form two types of metallic column, one containing uniquely Fe<sup>III</sup> [Fe···Fe 7.851 (3) Å] and the other with alternating Pb and Fe atoms [Pb···Fe 3.925 (3) Å]. The crystalline structure of BaFe<sup>[II]</sup><sub>2</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub> [barium diiron(III) bis(diphosphate)] is characterized by chains of Fe–O octahedra sharing faces with Ba–O decahedra and linked by corner-sharing Fe–O octahedra.

## Comment

While there are numerous structural studies of  $A^{II}B^{II}P_2O_7$  compounds, pyrophosphates of the form  $A^{II}B^{III}_2(P_2O_7)_2$  are relatively unknown.

SrFe<sup>III</sup><sub>2</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub> (Boutfessi, Boukhari & Holt, 1995) crystallizes in space group  $P\bar{1}$ , with metal atoms

distributed in two types of columns oriented along the [001] axis. The repeat unit within one column is  $\cdots$ Sr $\cdots$ Fe $\cdots$ Sr $\cdots$ Fe $\cdots$  [Sr $\cdots$ Fe 3.915 (2) Å] and within the second is  $\cdots$ Fe $\cdots$ Fe  $\cdots$  [Fe $\cdots$ Fe 7.830 (2) Å]. Fe atoms in adjacent columns are widely separated. The Fe atoms have octahedral coordination geometry, with an average Fe—O distance of 1.996 (3) Å.

The pyrophosphates  $BaTi_{2}^{III}(P_2O_7)_2$  (Wang & Hwu, 1991) and  $BaV_{2}^{III}(P_2O_7)_2$  (Benhamada, Grandin, Borel, Leclaire & Raveau, 1991) crystallize in space group C2/c. Powder diffraction data have been reported for PbFe\_{2}^{III}(P\_2O\_7)\_2 (Wanklyn, Wondre, Davison & Salmon, 1983) and MgCr\_{2}^{III}(P\_2O\_7)\_2 (Vst'yantsev & Tretnikova, 1974).

 $Fe_3(P_2O_7)_2$  ( $Fe_{0.5}^{11}Fe^{111}P_2O_7$ ) crystallizes in space group *Pnma* with linear  $Fe_3O_{12}^{16-}$  units composed of  $Fe_{11}^{11}\cdots Fe_{11}^{11}\cdots Fe_{11}^{11}$  trimers [ $Fe\cdots Fe_2.924(1)$ Å]. The central  $Fe_{11}^{11}$  atom has trigonal bipyramidal coordination geometry and shares opposite faces with octahedrally coordinated  $Fe_{111}^{111}$  atoms (Ijjaali, Venturini, Gerardin, Malaman & Gleitzer, 1991; Ijjaali, Venturini, Malaman & Gleitzer, 1990).

CuFe<sup>[II]</sup>( $P_2O_7$ )<sub>2</sub> is characterized by centrosymmetric Fe<sup>III</sup>...Cu<sup>II</sup>...Fe<sup>III</sup> trimers in which the central Cu atoms with square-planar coordination geometry share two O atoms with each of two neighboring octahedrally coordinated Fe atoms (Boutfessi, Boukhari & Holt, 1996).

The first title compound,  $PbFe_2^{II}(P_2O_7)_2$ , is isotypic with  $SrFc_2(P_2O_7)_2$  (Boutfessi, Boukhari & Holt, 1995) (Fig. 1).  $Fe^{III}$  ions occupy sites of distorted octahedral geometry and are arranged in columns of two types, one with a  $\cdots Pb \cdots Fe \cdots Pb \cdots Fe \cdots$  [Pb  $\cdots Fe$  3.925 (3) Å] repeat unit and the second composed of  $\cdots Fe \cdots Fe \cdots$ 



Fig. 1. A projected view of  $PbFe_{2}^{U1}(P_2O_7)_2$  onto the (110) plane. Displacement ellipsoids are plotted at the 50% probability level.

units [Fe···Fe 7.851 (3) Å]. The Fe—O distances within these columns are in the ranges 1.943 (6)–2.071 (6) and 1.935 (5)–2.077 (6) Å, respectively, and are similar to those observed in  $SrFe_2(P_2O_7)_2$ . Pb is eight coordinate [Pb—O 2.745 (6) Å] and the  $P_2O_7$  groups have an eclipsed conformation with angles and distances normal for pyrophosphate structures.



Fig. 2. A projected view of  $BaFe_{2}^{U1}(P_2O_7)_2$  showing chains of Ba–O and Fe–O polyhedra linked by Fe2–O octahedra.

The second title compound,  $BaFe_2^{III}(P_2O_7)_2$ , is isotypic with both  $BaTi_2^{II}(P_2O_7)_2$  (Wang & Hwu, 1991) and  $BaV_2^{III}(P_2O_7)_2$  (Benhamada, Grandin, Borel, Leclaire & Raveau, 1991). Chains of Fe<sup>III</sup>-O octahedra share opposite faces with each of two neighboring Ba-O decahedra (Fig. 2). These chains are aligned in parallel fashion forming layers, with the orientation of the chains altering by 90° in alternate layers. The Fe3 atom, which is situated on an inversion center, is located in these chains [average Fe3-O 1.984 (5) Å]. The crystallographically independent Fe2 atom, which is found on a twofold axis, has octahedral coordination geometry; these octahedra link the Ba-Fe chains by sharing a corner with Ba atoms of adjacent layers of chains [average Fe2-O 2.018 (5) Å]. The Ba-O distances [average Ba—O 2.918 (5) Å] are comparable to the average Ba— O distance of 2.926 (2) Å found in  $BaTi_2^{III}(P_2O_7)_2$ . The  $P_2O_7$  groups have a semi-eclipsed conformation.

## Experimental

 $PbFe_2^{III}(P_2O_7)_2$  was synthesized according to:

$$\begin{array}{rcl} PbO + 4(NH_4)_2HPO_4 + Fe_2O_3 & \rightarrow & PbFe_2(P_2O_7)_2 + 8NH_3 \\ & & + 6H_2O\uparrow. \end{array}$$

| $BaFe_2^{III}(P_2O_7)_2$ | was synt  | hesized b             | oy mi | ixing      | stoichiom   | etric |
|--------------------------|-----------|-----------------------|-------|------------|-------------|-------|
| quantities of (N         | IH4)2HPO4 | , BaCO <sub>3</sub> a | and F | $e_2O_3$ a | according t | 0:    |

$$\begin{array}{rcl} BaCO_3 + 4(NH_4)_2HPO_4 + Fe_2O_3 \rightarrow & BaFe_2(P_2O_7)_2 + 8NH_3\uparrow \\ & + 6H_2O\uparrow + CO_2\uparrow. \end{array}$$

For both compounds, the reaction mixture was ground together and heated progressively to 1273 K. After 24 h at this temperature, the molten mixture was cooled slowly  $(5 \text{ K h}^{-1})$  to 573 K and then in an uncontrolled manner to room temperature in air.

## $PbFe_2^{III}(P_2O_7)_2$

# Crystal data

| $PbFe_2(P_2O_7)_2$           | Mo $K\alpha$ radiation            |
|------------------------------|-----------------------------------|
| $M_r = 666.8$                | $\lambda = 0.71073 \text{ Å}$     |
| Triclinic                    | Cell parameters from 45           |
| Pī                           | reflections                       |
| <i>a</i> = 4.785 (2) Å       | $\theta = 8.7 - 16.4^{\circ}$     |
| b = 7.097 (2) Å              | $\mu = 19.954 \text{ mm}^{-1}$    |
| c = 7.851(3) Å               | T = 298  K                        |
| $\alpha = 89.71 (2)^{\circ}$ | Chunk                             |
| $\beta = 87.53 (3)^{\circ}$  | $0.15 \times 0.15 \times 0.15$ mm |
| $\gamma = 73.54 (2)^{\circ}$ | Colorless                         |
| $V = 255.5(2) \text{ Å}^3$   |                                   |
| Z = 1                        |                                   |

1026 observed reflections

 $[F > 5.0\sigma(F)]$ 

3 standard reflections

monitored every 97 reflections

intensity decay: negligible

 $R_{\rm int} = 0.0767$ 

 $\theta_{\rm max} = 30.0^{\circ}$ 

 $h = -6 \rightarrow 6$  $k = -9 \rightarrow 9$ 

 $l = 0 \rightarrow 10$ 

## Data collection

 $D_x = 4.334 \text{ Mg m}^{-3}$  $D_m$  not measured

| Syntex P4 four-circle              |
|------------------------------------|
| diffractometer                     |
| $\theta/2\theta$ scans             |
| Absorption correction:             |
| semi-empirical via $\psi$          |
| scans (XEMP; Siemens,              |
| 1991 <i>b</i> )                    |
| $T_{\min} = 0.27, T_{\max} = 0.49$ |
| 2352 measured reflections          |
| 1176 independent reflections       |

## Refinement

 $\Delta \rho_{\rm max} = 1.41 \ {\rm e} \ {\rm \AA}^{-3}$ Refinement on F $\Delta \rho_{\rm min} = -1.77 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.0421wR = 0.0534Extinction correction: none S = 1.22Atomic scattering factors 1026 reflections from International Tables 100 parameters for Crystallography (1992, Vol. C, Tables 4.2.6.8 and  $w = 1/[\sigma^2(F) + 0.0008F^2]$  $(\Delta/\sigma)_{\rm max} = 0.035$ 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$  for  $PbFe_2^{III}(P_2O_7)_2$ 

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|     | x            | у          | z          | $U_{co}$  |
|-----|--------------|------------|------------|-----------|
| Pbl | 0            | 0          | 0          | 0.027(1)  |
| Fel | 1/2          | 1/2        | 0          | 0.011 (1) |
| Fe2 | 0            | 0          | 1/2        | 0.010(1)  |
| P1  | 0.0332 (4)   | 0.3810 (3) | 0.2475 (2) | 0.009(1)  |
| 011 | 0.3062 (14)  | 0.4372 (9) | 0.2062 (7) | 0.016 (2) |
| 012 | -0.1225 (13) | 0.3524 (9) | 0.0850 (7) | 0.015 (2) |

| 013 | 0.0891 (14)  | 0.1971 (10) | 0.3513 (7) | 0.018 (2) |
|-----|--------------|-------------|------------|-----------|
| 014 | -0.1875 (14) | 0.5547 (9)  | 0.3501 (6) | 0.015 (2) |
| P2  | -0.3813 (5)  | 0.7695 (3)  | 0.2989(2)  | 0.011 (1) |
| 021 | -0.6269 (12) | 0.8198 (8)  | 0.4312 (6) | 0.011 (2) |
| O22 | -0.1839 (13) | 0.9021 (9)  | 0.2955 (6) | 0.014 (2) |
| 023 | -0.4818 (14) | 0.7573 (9)  | 0.1161 (7) | 0.015 (2) |

## Table 2. Selected geometric parameters (Å) for $PbFe_{2}^{III}(P_{2}O_{7})_{2}$

| Pb1—O12                           | 2.489 (6) | P1—011                | 1.493 (8) |
|-----------------------------------|-----------|-----------------------|-----------|
| Pb1—O22 <sup>i</sup>              | 2.607 (6) | P1                    | 1.576 (6) |
| Pb1—O12 <sup>ii</sup>             | 2.489 (6) | P1013                 | 1.500(7)  |
| Pb1—O22 <sup>iii</sup>            | 2.607 (6) | P1—O12                | 1.547 (6) |
| <sup>o</sup> b1—O23 <sup>iv</sup> | 2.776 (6) | P2014                 | 1.603 (6) |
| Pb1—O23                           | 2.776 (6) | P2—O21                | 1.500 (5) |
| Pb1013                            | 3.197 (6) | P2—O22                | 1.510 (8) |
| Pb1013"                           | 3.197 (6) | P2—O23                | 1.544 (6) |
| Fe1011                            | 1.943 (6) | Fe2-013               | 1.944 (7) |
| Fe1-011                           | 1.943 (6) | Fe2-013 <sup>vm</sup> | 1.944 (7) |
| Fe1-012 <sup>vn</sup>             | 1.957 (6) | Fe2-021"              | 1.935 (5) |
| Fe1—012 <sup>iii</sup>            | 1.957 (6) | Fe2—O211x             | 1.935 (5) |
| Fe1—O23 <sup>in</sup>             | 2.071 (6) | Fe2—O22'              | 2.077 (6) |
| Fe1—O23 <sup>vii</sup>            | 2.071 (6) | Fe2—O22 <sup>×</sup>  | 2.077 (6) |
|                                   |           |                       |           |

Symmetry codes: (i) x, y = 1, z; (ii) -x, -y, -z; (iii) -x, 1 - y, -z; (iv) 1+x, y-1, z; (v) - 1 - x, 1 - y, -z; (vi) 1 - x, 1 - y, -z; (vii) 1 + x, y, z;(viii) -x, -y, 1-z; (ix) -1-x, 1-y, 1-z; (x) -x, 1-y, 1-z.

# BaFe<sub>2</sub><sup>III</sup>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>

Crystal data  $BaFe_2(P_2O_7)_2$  $M_r = 596.9$ Monoclinic C2/ca = 10.586 (2) Å b = 10.463 (2) Åc = 9.685 (2) Å  $\beta = 103.16 (3)^{\circ}$ V = 1044.5 (4) Å<sup>3</sup> Z = 4 $D_x = 3.796 \text{ Mg m}^{-3}$  $D_m$  not measured

Data collection Svntex P4 four-circle diffractometer  $\theta/2\theta$  scans Absorption correction: semi-empirical via  $\psi$ scans (XEMP; Siemens, 1991*b*)  $T_{\min} = 0.142, T_{\max} =$ 0.448

1930 measured reflections 1528 independent reflections

#### Refinement

Refinement on F R = 0.0421wR = 0.0534S = 1.221528 reflections 100 parameters  $w = 1/[\sigma^2(F) + 0.0008F^2]$  $(\Delta/\sigma)_{\rm max} = 0.035$ 

Mo  $K\alpha$  radiation  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 45 reflections  $\theta=10.0{-}17.6^\circ$  $\mu = 7.171 \text{ mm}^{-1}$ T = 298 KChunk  $0.215 \times 0.15 \times 0.15$  mm Colorless

1024 observed reflections  $[F > 9.0\sigma(F)]$  $R_{\rm int} = 0.0668$  $\theta_{\rm max} = 30.0^{\circ}$  $h = -1 \rightarrow 14$  $k = -1 \rightarrow 14$  $l = -13 \rightarrow 13$ 3 standard reflections monitored every 97 reflections intensity decay: negligible

 $\Delta \rho_{\rm max} = 1.41 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -1.77 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$  for  $BaFe_2^{II}(P_2O_7)_2$ 

| $U_{eq} = (1$ | $(3)\Sigma_i \Sigma_i$ | $\Sigma_j U_{ij} a$ | *a | *ai.a | , |
|---------------|------------------------|---------------------|----|-------|---|
|---------------|------------------------|---------------------|----|-------|---|

|     | x          | у          | z           | $U_{eq}$  |
|-----|------------|------------|-------------|-----------|
| Bal | 1/4        | 3/4        | 0           | 0.024(1)  |
| Fe2 | 1/2        | 0.4521(1)  | 1/4         | 0.014 (1) |
| Fe3 | 0          | 1/2        | 0           | 0.014 (1) |
| P1  | 0.5606(2)  | 0.6910(2)  | 0.0561 (2)  | 0.014 (1) |
| 011 | 0.4663 (5) | 0.6003 (5) | 0.1058 (5)  | 0.017 (1) |
| 012 | 0.5243 (5) | 0.8273 (5) | 0.0832 (6)  | 0.019(1)  |
| O13 | 0.5648 (5) | 0.6677 (5) | -0.0946 (6) | 0.020 (2) |
| 014 | 0.7009 (5) | 0.6736 (5) | 0.1565 (5)  | 0.016(1)  |
| P2  | 0.7810(2)  | 0.5435 (2) | 0.2015 (2)  | 0.014 (1) |
| O21 | 0.6822 (5) | 0.4428 (5) | 0.2153 (5)  | 0.018(1)  |
| O22 | 0.8472 (5) | 0.5059 (5) | 0.0861 (6)  | 0.020 (2) |
| O23 | 0.8736(5)  | 0.5820(5)  | 0.3395 (5)  | 0.019 (2) |

| Table | 4. | Selected | geometric              | parameters | (A) | for |
|-------|----|----------|------------------------|------------|-----|-----|
|       |    |          | $BaFe_2^{III}(P_2O_7)$ | )2         |     |     |

| Bal—Oll                                                                                                                                       | 2.771 (5) | Fe3—O23 <sup>vin</sup> | 1.999 (5) |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|-----------|--|--|--|--|
| Ba1—O12                                                                                                                                       | 2.944 (5) | P1011                  | 1.531 (6) |  |  |  |  |
| Ba1—O11 <sup>i</sup>                                                                                                                          | 2.771 (5) | P1012                  | 1.516 (5) |  |  |  |  |
| Ba1-O12 <sup>i</sup>                                                                                                                          | 2.944 (5) | P1-013                 | 1.491 (6) |  |  |  |  |
| Bal-O22 <sup>ii</sup>                                                                                                                         | 2.921 (6) | PI-014                 | 1.590 (5) |  |  |  |  |
| BalO22 <sup>iii</sup>                                                                                                                         | 2.921 (6) | P2014                  | 1.611 (5) |  |  |  |  |
| Ba1—O21 <sup>ii</sup>                                                                                                                         | 3.101 (6) | P2—022                 | 1.501 (6) |  |  |  |  |
| Ba1-O21 <sup>iii</sup>                                                                                                                        | 3.101 (6) | P2021                  | 1.511 (6) |  |  |  |  |
| Ba1-O23iv                                                                                                                                     | 2.854 (6) | P2—O23                 | 1.521 (5) |  |  |  |  |
| Ba1-O23 <sup>v</sup>                                                                                                                          | 2.854 (6) | Fe2011 <sup>v</sup>    | 2.063 (5) |  |  |  |  |
| Fe3                                                                                                                                           | 1.971 (5) | Fe2-011                | 2.063 (5) |  |  |  |  |
| Fe3-0121                                                                                                                                      | 1.971 (5) | Fe2—O13 <sup>iii</sup> | 1.958 (5) |  |  |  |  |
| Fe3-O22 <sup>ini</sup>                                                                                                                        | 1.982 (6) | Fe2—O13 <sup>1x</sup>  | 1.958 (5) |  |  |  |  |
| Fe3—O22 <sup>vii</sup>                                                                                                                        | 1.982 (6) | Fe2—O21                | 2.034 (6) |  |  |  |  |
| Fe3—O23 <sup>v</sup>                                                                                                                          | 1.999 (5) | Fe2—021                | 2.034 (6) |  |  |  |  |
| Symmetry codes: (i) $\frac{1}{2} - x$ , $\frac{3}{2} - y$ , $-z$ ; (ii) $x - \frac{1}{2}$ , $\frac{1}{2} + y$ , $z$ ; (iii) $1 - x$ , $1 - z$ |           |                        |           |  |  |  |  |

Symmetry codes: (i)  $\frac{1}{2} - x$ ,  $\frac{3}{2} - y$ , -z; (ii)  $x - \frac{1}{2}$ ,  $\frac{1}{2} + y$ , z; (iii) 1 - x, 1 - y, -z; (iv)  $x - \frac{1}{2}$ ,  $\frac{3}{2} - y$ ,  $z - \frac{1}{2}$ ; (v) 1 - x, y,  $\frac{1}{2} - z$ ; (vi)  $x - \frac{1}{2}$ ,  $y - \frac{1}{2}$ , z; (vii) x - 1, y, z; (viii) x - 1, 1 - y,  $z - \frac{1}{2}$ ; (ix) x, 1 - y,  $\frac{1}{2} + z$ .

A variable scan rate was used, with a scan width of  $0.6^{\circ}$  below  $K\alpha_1$  and  $0.6^{\circ}$  above  $K\alpha_2$ . Refinement was completed using full-matrix least-squares methods.

For both compounds, data collection: XSCANS (Siemens, 1991a); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXS86; molecular graphics: XP (Siemens, 1990).

The authors express their thanks to the National Science Foundation for assistance in the form of a grant to permit collaborative investigation and to the Moroccan–American Commission for a Fulbright grant to EMH.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Boutfessi, A., Boukhari, A. & Holt, E. M. (1996). Acta Cryst. C52, 1597-1599.
- Ijjaali, M., Venturini, G., Gerardin, R., Malaman, B. & Gleitzer, C. (1991). Eur. J. Solid State Inorg. Chem. 28, 983-998.
- Ijjaali, M., Venturini, G., Malaman, B. & Gleitzer, C. (1990). C. R. Acad. Sci. Paris Sér. II, 310, 1419-1423.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Siemens (1990). XP. Interactive Molecular Graphics Program. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991a). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991b). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Vst'yantsev, V. M. & Tretnikova, M. G. (1974). Izv. Akad. Nauk SSSR Neorg. Mater. 10, 676–678.
- Wang, S. & Hwu, S.-J. (1991). J. Solid State Chem. 90, 31-41.
- Wanklyn, B. M., Wondre, F. R., Davison, W. & Salmon, R. (1983). J. Mater. Sci. Lett. 2, 511–515.

Acta Cryst. (1996). C52, 1597-1599

## Copper(II) Diiron(III) Pyrophosphate

AICHA BOUTFESSI,<sup>*a*</sup> ALI BOUKHARI<sup>*a*</sup> and ELIZABETH M. HOLT<sup>*b*\*</sup>

<sup>a</sup>Laboratoire de Chimie du Solide Appliquée, Departement de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco, and <sup>b</sup>Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA. E-mail: chememh@osucc.bitnet

(Received 23 November 1995; accepted 16 January 1996)

## Abstract

The crystalline structure of  $CuFe_2^{[I]}(P_2O_7)_2$  [copper(II) diiron(III) bis(diphosphate)] is characterized by isolated and centrosymmetric  $Fe \cdots Cu \cdots Fe$  trimers. The  $Cu^{II}$  atom has square-planar coordination geometry, with Cu—O distances in the range 1.920(3)–1.934(3) Å, while the  $Fe^{III}$  atom is octahedrally coordinated, with an average Fe—O distance of 2.000(3) Å.

#### Comment

Studies of mixed-valence pyrophosphates of the type  $A^{II}B^{III}P_2O_7$  are limited in the literature. Fe<sub>3</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub> (Fe<sup>II</sup><sub>0.5</sub>Fe<sup>III</sup>P<sub>2</sub>O<sub>7</sub>) crystallizes in space group *Pnma*, with linear Fe<sub>3</sub>O<sup>I6-</sup><sub>12</sub> trimers composed of Fe<sup>III</sup>...Fe<sup>II</sup>...Fe<sup>III</sup> units [Fe···Fe distances 2.924 (1) Å]. The central Fe<sup>III</sup> atom has trigonal bipyramidal coordination geometry, sharing opposite faces with octahedrally coordinated Fe<sup>III</sup> atoms. The solid shows antiferromagnetic behavior

Benhamada, L., Grandin, A., Borel, M., Leclaire, A. & Raveau, B. (1991). Acta Cryst. C47, 2437-2438.

Boutfessi, A., Boukhari, A. & Holt, E. M. (1995). Acta Cryst. C51, 346-348.